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Virtual Reality (VR) is an emerging medium with consequences for studying

design processes. In VR, users can design using direct manipulation and move

both by walking and using their hands in the physical world and beyond physical

spaces using abstract movement such as teleportation. However, research

examining VR design processes remains limited.

In this work, we present a large-scale analysis of 730 VR designs from 254

students. We built models of VR design processes, selecting features based on

previous theoretical and empirical research. By examining these models at scale,

we analyzed design behaviors and their relationship with the context and final

design. This research provides a tool for describing VR design processes and

highlights broader implications for designers and educators.
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V
irtual Reality (VR) offers users unique possibilities when creating

three-dimensional designs. Unlike computer-aided design (CAD) sys-

tems which typically require high levels of software-specific expertise,

popular VR applications such as Google’s Tilt Brush and ENGAGE XR

allow users to more intuitively engage in Schneiderman’s definition of direct

manipulation (1982) to create and express ideas in 3D space. In contrast to

sketching on paper, users are free to draw, create, and manipulate 3D objects

in drastically different virtual environments where they can roam around in

their virtual avatars, potentially sharing the space with others. Due to the
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unique possibilities for design in VR, we believe that VR can become a com-

mon design tool in the near future (Kent, Snider, Gopsill, & Hicks, 2021).

To best understand the use of VR as a design tool, we need to understand the

design processes it enables. Unsurprisingly, many have designed protocols

and coding schemes for analyzing design processes such as sketching tasks

for individual architects, designers, and students (Prats, Lim, Jowers,

Garner, & Chase, 2009; Suwa, Purcell, & Gero, 1998; Suwa & Tversky,

1997) and collaborative design tasks (Kim & Lee, 2016; Lloyd & Oak,

2018). That said, while works have studied the effects of groups in VR

(Han et al., 2023; Khojasteh & Won, 2021; Miller, Sonalkar, Mabogunje,

Leifer, & Bailenson, 2021) and the virtual design process for addressing

domain-specific problems (Koutsabasis, Vosinakis, Malisova, &

Paparounas, 2012; Laing & Apperley, 2020; Shen, Ong, & Nee, 2010), there

has been little work studying the VR design process for more open-ended

tasks. Moreover, while typical studies look at dozens of designs, examining

designs at larger scales (e.g., hundreds at a time) can enable a more compre-

hensive bottom-up analysis of the VR design process.

Our work aims to fill three research gaps in the study of VR design processes.

To start, despite many prior works leveraged the rich VR tracking data from

eyes (Shadiev & Li, 2023), and head and hands (Miller et al., 2023), there is no

design coding scheme that contextualizes this data for the design process.

Therefore, the field lacks a methodology for describing how a user designs

in VR. Further, there is no well-established approach that models and com-

pares VR design processes across users and context. Finally, the limited access

to VR hardware creates a barrier for researchers to collect and study VR

design processes at a large scale and extract design behaviors through

bottom-up approaches.

To address these shortcomings, we present a large-scale analysis of the VR

design process. We collected and studied 730 unique VR designs from 254 stu-

dents, developed a VR design coding scheme based on previous frameworks,

and proposed a bottom-up analysis pipeline for describing the VR design pro-

cess. Then, using these techniques, we summarized the common design behav-

iors and their relationship with the final design and context. This work

introduces a tool for describing the VR design process and highlights practical

implications for designers and educators.
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1 Background

1.1 Describing and categorizing design processes

1.1.1 Design protocol analysis
Ericsson and Simon (1984) first proposed using protocol analysis on verbal

data to study cognitive processes, and since then, design researchers have

leveraged verbal and retrospective protocols for understanding design pro-

cesses (Eckersley, 1988; Yen & Jiang, 2009). To do this, design researchers

have developed coding schemes and frameworks such as information cate-

gories (Suwa et al., 1998; Suwa & Tversky, 1997), linkography

(Goldschmidt, 2014; Kan & Gero, 2008), and Function-Behavior-Structure

ontology (J. S. Gero & Kannengiesser, 2007; Qian & Gero, 1996).

One seminal framework for performing protocol analysis is information cate-

gories. Introduced by Suwa and Tversky’s (1997), the approach delineated

four information categories e emergent properties, spatial relations, func-

tional relations, and background knowledge, which were used to divide proto-

cols into segments containing coherent statements relating to a single item,

space or topic. Through segmenting protocols into smaller processes, this

approach enabled analyses of the interconnectivity within the design process

and comparisons of protocols such as those between experts and novices.

Suwa et al. (1998) later extended information categories into cognitive actions

by proposing the categories of Physical, Perceptual, Functional, and Concep-

tual. Within this framework, the authors coded physical actions into the action

of creating depictions (D-action), observing previous depictions (L-action),

and other actions such as gesturing and moving pens (M-action). The authors

also introduced three types of indices at the perceptual level, the new,

continual, and revisited indices, which corresponded to attending to a feature

for the first time, continuing to attend to the most recently attended feature,

and revisiting a previously attended feature, respectively.

Our work is related to past works on protocol analysis as we propose design

coding schemes related to information categories for segmenting and

analyzing VR design processes. In contrast to protocol analysis which typi-

cally uses manual labeling of verbal protocols and video recordings, our

approach that uses VR tracking data does not rely on what designers recall

or choose to mention retrospectively nor does it depend on what researchers

pick up from video recordings. Instead, tracking data enables automatic label-

ing and modeling of design processes, which allows us to examine design activ-

ities at scale without needing human coders. Finally, another benefit of using

VR over these protocol analysis approaches is its ability to track motion and

action at a high frequency, which enables more granular analyses of motion in

conjunction with changes made to the design.
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1.1.2 General shape transformations
One theory particularly relevant to our formulation of the design coding

scheme is the notion of general shape transformations (Prats et al., 2009). In

their work, the authors derived rules that captured the types of shape transfor-

mation observed in designers and architects sketching on paper-based digital

notepads. Through analyzing changes across sketches, the authors extrapo-

lated seven types of transformations: outline transformation which included

transformation of paths between two points and modifications of the length

or thickness of a created element, structure transformation such as element

translation, rotation, scaling, and reflection, substitute element, add element,

delete element, cut element, and change view.

There is a natural analog between designing across sketches and in VR. Rather

than iterating through successive sketches, VR users can modify their designs

directly. In addition to the clear parallels of creating (add element), manipu-

lating (structure transformation) and deleting 3D objects (delete element) in

the virtual environment, viewpoint changes (change view) also become trivial

for those without formal design training as VR users can directly walk or tele-

port to new locations. Because of this, the design coding schemes we proposed

in Section 2.2 focused on extracting and labeling design-related actions related

to object creation, manipulation, and deletion, as well as user movement that

signifies viewpoint changes.

1.1.3 Analyzing design behaviors in 3D and virtual
environments
Design researchers have also studied design behaviors using 3D modeling pro-

grams and VR. Rahman, Xie, and Sha (2021) studied the design sequences of

engineering students solving solarized home and parking lot design problems

in a desktop CAD environment. After deriving a coding scheme based on the

Function-Behavior-Structure ontology (J. Gero, 1990), the authors showed

that deep learning approaches were effective in predicting actions and useful

in understanding expert-novice differences. More recently, Mill�an et al.

(2022) asked architecture students to design shelters using fixed-size cubes us-

ing a desktop 3D modeling program. By fitting decision trees using snapshots

collected at six design instants for each design, the authors clustered similar

problem-solving pathways to infer common problem-solving behavior. Using

the decision trees, the work highlighted properties of high-quality designs and

showed that actions taken during the intermediate stage of the task were the

most salient predictors of quality. Sopher and Dorta (2023, pp. 423e440) later

studied VR design learning by proposing Co-KCA, which extended the

Knowledge Construction Activity method (Sopher, Fisher Gewirtzman, &

Kalay, 2019) and linkography (Goldschmidt, 2014) to the collaborative

setting. Through a case study of a VR codesign studio followed by manual

coding of the Co-KCA units and design development links, the authors
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demonstrated the ability to analyze codesign scenarios involving individuals in

different roles.

In our work, we also investigated the VR design process but focused specif-

ically on examining design processes for both individual and collaborative re-

sponses to more open-ended design activities. Similar in motivation to

previous quantitative approaches (Mill�an et al., 2022; Rahman et al., 2021),

we proposed a bottom-up analysis pipeline that adopted analytical methods

such as Hidden Markov Models and Multi-dimensional Scaling for extracting

common design behaviors.
1.2 Design activities and ideation in virtual reality
Researchers have demonstrated the benefits of using VR for design activities.

In particular, a body of work compared VR to non-immersive approaches for

facilitating design activities. By comparing VR softwares (e.g., Gravity Sketch)

to non-immersive ones, works have found that immersivedesign processes

were more stimulating and attractive (Houzangbe et al., 2022), induced

more holistic approaches to concept generation (E. K. Yang & Lee, 2020),

and yielded increased involvement and more rewarding experiences (Obeid

& Demirkan, 2020). Works have also demonstrated that VR improved the

quality of creative products (X. Yang et al., 2018) and performance on the

design and planning, testing and modification, and the thinking and sharing

stages of the creative design process (Y.-S. Chang, Kao, & Wang, 2022).

Another corpus of research focused on evaluating specific VR systems for

design activities and ideation. While some works evaluated existing VR soft-

wares (Joundi, Christiaens, Saldien, Conradie, & De Marez, 2020), others

have developed immersive systems to support classroom activities (Gisli

Thorsteinsson & Page, 2007), sketching (Dorta & P�erez, 2006; Drey,

Gugenheimer, Karlbauer, Milo, & Rukzio, 2020), co-design (Dorta,

Kinayoglu, & Hoffmann, 2016; Mei, Li, de Ridder, & Cesar, 2021), and prod-

uct design (Berg & Vance, 2017). Many have also explored different ways to

facilitate brainstorming and ideation in VR (Bhagwatwar, Massey, &

Dennis, 2018; Ide et al., 2021; G. Thorsteinsson & Denton, 2006; Gisli

Thorsteinsson, Niculescu, & Page, 2010) and pointed to factors such as immer-

sion and avatars for enhancing creativity during virtual brainstorming (Gong,

Lee, Soomro, Nanjappan, & Georgiev, 2022). Collectively, these works pre-

sented the possibilities of leveraging VR for ideation and design activities in

either individual or collaborative settings, and did so through assessing perfor-

mance on ideation (Gong et al., 2022) and domain-specific tasks in areas such

as product design (Berg & Vance, 2017), and interior and architectural design

(Dorta et al., 2016; Dorta & P�erez, 2006).
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As prior research advocates for the use of VR in facilitating design activities, it

becomes imperative to investigate how people respond to different design tasks

in immersive environments. Our work extended past works by studying both

the individual and collaborative design processes and focused specifically on

their responses towards different open-ended design prompts. Through exam-

ining the actions and movements of individuals and groups at scale, we iden-

tified common design behaviors that improved our understanding of how

people design in VR.
1.3 Context in virtual environments
Bailenson, Beall, Loomis, Blascovich, and Turk (2004) referred to situational

context as the spatial or temporal structure of those interacting in collabora-

tive virtual environments. Many have studied the psychological effects of situ-

ational context, for example the effects of natural environments (Lee et al.,

2022; Nukarinen et al., 2022; Yao, Chen, Wang, & Zhang, 2021), indoor

and outdoor environments (Han et al., 2023; Minocha & Reeves, 2010), and

the amount of visible space through manipulating ceiling heights and

spaciousness (Han et al., 2023; Meyers-Levy & Zhu, 2007; Okken, van

Rompay, & Pruyn, 2013; Wu, Law, Heath, & Borsi, 2017). Notably, research

showed that greater visible space yielded higher levels of entitativity, enjoy-

ment, and self- and spatial presence (Han et al., 2023) and that greater

room sizes increased self-disclosure (Okken et al., 2013). Works have also

found that higher ceiling height primed thoughts related to the concept of

freedom while lower ceiling height primed thoughts related to confinement

(Meyers-Levy & Zhu, 2007) and that outdoor environments increased

perceived restorativeness and enjoyment compared to indoor environments

(Han et al., 2023).

Researchers also examined the effects of task-specific contexts such as group

size and activity type. Specifically, Huang, Richter, Kleickmann, and

Richter (2022) demonstrated that larger groups increased the heart rates and

subjective ratings of stress for instructors in a VR classroom. With regards

to task types, Yoon, Choi, Yoon, and Jo (2023) found that groups using

VR outperformed those who did not use in VR on tasks centered on commu-

nication, interaction, and immediate situational judgments, whereas tasks

involving routine handling of physical objects showed no such improvement.

Relatedly, in a study of triads collaborating on four design tasks, Miller et al.

(2021) found no significant differences of synchrony due to tasks.

Despite these works demonstrating context’s influence on human behaviors in

virtual environments, and others examining how human behaviors in non-VR

settings are shaped by factors such as group size (Renzulli, Owen, & Callahan,

1974) and teaching style (Inayat & Ali, 2020; Michel, Cater, & Varela, 2009),

our understanding of how context effects design behaviors in virtual
Design Studies Vol 90 No. C Month 2024
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environments remains limited (Sonalkar, Mabogunje, Miller, Bailenson, &

Leifer, 2020). Our work bridges this gap by examining the relationship be-

tween VR design behaviors and context. Building on the research reviewed

here, we focused on the context factors of design prompts, teaching assistants,

settings (indoor, outdoor), ceiling heights, amount of visible space, and num-

ber of students.
2 Methods

2.1 Open-ended design activities
We conducted two studies, one focused on the individual design process

(N ¼ 670) and another on the collaborative design process (N ¼ 60).

2.1.1 Individual design activities
We analyzed the VR field experiment conducted by Han et al. (2023), where

137 university students participated in a 10-week course in VR. For 8 out of

the 10 weeks, students engaged in sessions guided by 1 of 3 teaching assistants

in groups of size 5 to 8 through the ENGAGE social VR platform. The ses-

sions consisted of an instructor-led discussion and a 15-min open-ended design

activity which varied across weeks (Table 1). We focused on these design ac-

tivities, and specifically the time periods spanning students’ design processes

(Figure 1). For each design activity, students individually brainstormed, de-

signed, or prototyped responses to the given prompt using the tools provided

through ENGAGE, which allows users to create, manipulate, and delete 3D

objects, and draw using a 3D pen. During the design activities, users are al-

lowed to walk and teleport around the virtual space, moving to new locations

to create new objects or to examine designs from novel viewpoints. Following

the end of the design activity, students spent about 5 min sharing their final

designs with the group.

There were 5 context-related variables: the design prompts, teaching assis-

tants, setting (indoor and outdoor), amount of visible space (panoramic and

constrained), and number of students in each session.We had varied the move-

ment constraints (passive and active) but it had failed manipulation check due

to students not following the instructions, so we excluded it from our analysis.

We dropped week 5 from our analysis given that it was a discussion-based ac-

tivity and users were not instructed to create anything during the session. This

yielded 670 unique individual designs in total.

2.1.2 Collaborative design activities
We conducted a second study investigating the collaborative design process in

VR.We asked 146 university students, 117 of whom consented, to respond to 4

open-ended design prompts in groups of size 2 to 4 over the span of 4 weeks

(Table 2). There were in total 40 groups, out of which 26 consented. Each
7



Table 1 Individual design study weekly design activities, which groups of students responded to individually during their dis-

cussion sections

Week Open-ended Design Activity

1 Consider the affordances of VR and create a prototype of something that leverages the
uniqueness of VR

2 Create something frightening that induces a feeling of high presence
3 Consider the affordances of VR to make a concept that is difficult to understand, easy
4 Create something that reimagines avatars and representations of the self
5 Small-group discussions reflecting on various VR empathy experiences
6 Create a meditation room or “safe-space”
7 Brainstorm an idea of how to communicate a message about climate change
8 Create and playtest a VR-based game

Figure 1 Groups of students during individual design activities. Students are seen conceptualizing difficult-to-understand concepts (top-left),

reimagining avatar and self-representation (top-right), creating meditation rooms or safe-spaces (bottom-left), and designing messages about

climate change (bottom-right) using the 3D pen and 3D objects
week, students met in their pre-assigned groups without the presence of a

teaching assistant in ENGAGE for 20 min. During this time, each group dis-

cussed a given topic and participated collaboratively in an open-ended design

activity that again involved prototyping, creating, or brainstorming using the

tools provided by the platform. Similar to Study 1, we again focused our anal-

ysis on the design activities (Figure 2). To study the effects of context on the

design process, we varied the context of the group sessions, manipulating
Design Studies Vol 90 No. C Month 2024
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Table 2 Collaborative design study weekly design activities, which groups of students responded to collaboratively during their

discussion sections

Week Open-ended Design Activity

1 Talk about accessibility within the context of ENGAGE (e.g., what are the constraints?). Make a list of
things that ENGAGE does well and does not do well (e.g., using sticky notes), and specify the number of
sticky notes per person (1 pro and 1 con).

2 Reimagine what your avatar would look like. Either draw an avatar that you wish represents you or an
avatar you would like to embody. Can, but doesn’t have to, be a human avatar.

3 Collaboratively work with your group members to create a meditation room or a safe space using any of
the ENGAGE tools (e.g., 3D pen, objects, sticky notes)

4 Consider a target audience/population (e.g., students of a certain age group, students with a certain
learning disability), a goal (e.g., retaining factual information, having students experience something), and
a topic of interest (e.g., language, STEM, social skills). Empathize, Define, Ideate, and Prototype an
application tailored to your Audience, Goal, and Topic

---
the amount of visible space (panoramic and constrained) and ceiling heights

(low and tall). We excluded week 1 data from our analysis because it corre-

sponded to a brainstorming activity using shared sticky notes. This resulted

in a total of 60 collaborative designs.

2.2 VR equipment and tracking data
Students used the Meta Oculus Quest 2 headsets and two hand-held control-

lers to participate in the activities. Using the ENGAGE platform, we recorded

the tracking data of each user, which included the positions (x, y, z) and ori-

entations (row, pitch, yaw) of the head and two hands, as well as object-

related information such as the position, orientation, and scale of each object,

and drawing actions. The user motion data was recorded at 30 Hz and the

object-related information at around 0.21 Hz. An analysis on the changes of

object-related information over time allowed us to extract out object-related

actions closely related to the shape transformations identified by Prats et al.

(2009), such as object creation, manipulation, and deletion. This unit of anal-

ysis resembled the notion of segments proposed by Suwa and Tversky (1997),

except that ours is extracted temporally and theirs is extrapolated through ver-

bal protocols. For object manipulations, we further determined whether the

action is carried out on the most recently created object or a previously created

object, mirroring the continual and revisited action categories outlined by

Suwa and Tversky (1997).

2.3 VR design coding scheme
In this section, we describe the VR Design Coding Scheme for coding the in-

dividual and collaborative design processes.

2.3.1 Coding individual design
Our VR design coding scheme encodes both object-related activity and user

motion. Specifically, for each user, we extracted 12 user-level features each

time object-related information is recorded, out of which 6 are object-
9



Figure 2 Groups of Students during the collaborative design activities. Students are seen collaboratively creating a meditation room or safe-

space (top-left, bottom-right), reimaging avatar representation (top-right), and prototyping an application for a given audience, goal, and topic

(bottom-left) using the 3D pen and 3D objects
related, and 6 are motion-related. The 6 object-related features capture

whether certain object-related actions have occurred since the previous re-

corded timestamp (Figure 3). They were.

1. 3D pen drawing: this binary feature describes whether the user used the

3D pen.

2. Object creation: this binary feature describes whether the user added a

new object into the scene.

3. Object deletion: this binary feature describes whether the user removed a

previously created object from the scene.

4. Object translation: this feature describes whether the user moved the po-

sition of an existing object. The feature takes on one of three categories:

(1) the user did not move any object; (2) the user moved the most recently

created object; (3) the user moved an object that was not most recently

created. The latter two categories mirror the notion of indices proposed

by Suwa et al. (1998), where (2) refers to continual actions and (3) corre-

sponds to revisited actions.
Design Studies Vol 90 No. C Month 2024
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Figure 3 Toy action sequence demonstrating each of the 6 object-related features encoded in the VR design coding scheme. The VR user (a)

begins by drawing using the 3D pen, (b) proceeds to insert a new 3D object into the scene, (c) scales down, (d) rotates, (e) and moves the 3D

object to a new location before finally (f) deciding to delete the 3D object from the design

---
5. Object rotation: this feature describes whether the user rotated an existing

object. The feature can take on one of three categories and is formulated

the same way as object translation.

6. Object scaling: this feature describes whether the user scaled an existing

object. The feature can take on one of three categories and is again

formulated the same way as object translation.

The 6 motion-related features capture body movement since the previous re-

corded timestamp of object-related information. Specifically, we specified

hand motion not by left- and right-hand, but as the slower and faster hands,

so that our coding scheme is less dependent on handedness while still using

hand motion as signals to analyze design processes. Further, we encoded

head movement into yaw, pitch, and roll rotations because past research sug-

gested that head rotation in different axes corresponds to different cognitive

processes (Holzwarth et al., 2021; Slater, Steed, McCarthy, & Maringelli,

1998; Won, Perone, Friend, & Bailenson, 2016). To obtain the 6 features,

we first extracted out the following information.

7. Head yaw rotation: the total amount of head yaw rotation in degrees

8. Head pitch rotation: the total amount of head pitch rotation in degrees

9. Head roll rotation: the total amount of head roll rotation in degrees
11



10. Slower hand movement: the total amount of distance traveled in meters

by the hand that has traveled less within the current time period

11. Faster hand movement: the total amount of distance traveled in meters by

the hand that has traveled more within the current time period

12. Horizontal plane movement: the total amount of distance traveled by the

user in the horizontal plane in meters during the current time period.

Users can move either by walking, smooth translation using joysticks,

or teleportation.

After obtaining these 6 continuous values, we transformed the values into

discrete categories. For a value x of feature i collected at time t, we obtain

the transformed value as

xtransformed¼MaxðFloori;MinðCeilingi; logðxÞÞÞ

where the floor and ceiling values are chosen specifically for feature i. The

floor and ceiling values can be found in Appendix A. This operation trans-

formed the right-skewed distributions of the motion values into more sym-

metrical distributions and also accounted for extreme values such as no

motion that would have yielded undefined values during the logarithmic oper-

ation, and large motion during teleportation. Following this, we binned the

transformed values into three equally spaced bins, corresponding to low,

moderate, and high motions.

Our decision to bin continuous features allowed us to generate discrete states

that can be concatenated with the object-related features into a single descrip-

tive state at every timestamp. To do this, we extracted the 12 features across

the recording for each user at a given timestamp and concatenated them

into a single state encoding. We then generated the sequence of states for a

given user for a given session, which is finally cropped so that the first state

of the sequence corresponded to the first object-related manipulation and

the last state marked the final object-related manipulation.

2.3.2 Coding collaborative design
Collaborative and individual design tasks are different because working in

groups allows users to discuss and make design choices collectively, and

work on different parts of the design concurrently. The collaborative design

process should thus be examined as a collection of actions and motions

from all users. We therefore adapted our coding scheme for collaborative de-

signs to account for collaborations in VR. To do this, we began by extracting

the sequences of states for all users in each session. Following this, we ex-

tracted 27 group-level binary features for each timestamp. There were 12
Design Studies Vol 90 No. C Month 2024
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group-level object-related features, where the first 3 features described whether

any user within the group has (1) created an object, (2) deleted an object, or (3)

drawn using the 3D pen. We further expanded each of the object translation,

object rotation, and object scaling features into 3 binary features, namely (1)

whether at least one user has not manipulated any object, (2) whether at least

one user manipulated their most recently created object, and (3) whether at

least one user manipulated an object that they did not most recently create.

The next 15 features captured group motion. We began by defining a total of 5

features by extracting the 6 user-level motion-related features described in Sec-

tion 2.3.1, combining the slower and faster hand movements into one feature,

as combining the two features improved downstream interpretability. Specif-

ically, we merged the slower and faster hand movement features into a feature

that described the mean handmovement by taking the average of the two hand

motions and binning the values into equally spaced categories (i.e., low, mod-

erate, high). Then, for each of the 5 motion-related features, we formulated 3

group-level features describing whether at least one user’s motion is catego-

rized in the low, moderate, and high categories, respectively.

Upon extracting the 27 group-level features and the sequence of states for a

given design, we cropped the sequence so that the first state corresponded to

the first object-related manipulation within the group and the last state

marked the final object-related manipulation within the group.
2.4 Design process modeling
Many approaches exist for mining patterns and sequences of design behaviors,

including those using Hidden Markov Models (Hu, McComb, & Goucher-

Lambert, 2023; McComb, Cagan, & Kotovsky, 2017a,b), Bayesian optimiza-

tion frameworks (Chaudhari, Bilionis, & Panchal, 2020; Sha, Kannan, &

Panchal, 2015), as well as deep learning approaches such as long short-term

memory networks (Rahman et al., 2021) and unsupervised learning techniques

(Mill�an et al., 2022). In particular, extensive research has used HiddenMarkov

Models (HMMs) to understand additive manufacturing (Mehta, Malviya,

McComb, Manogharan, & Berdanier, 2020), design ideation (Hu et al.,

2023), as well as proficiency, sequence-learning abilities, and process heuristics

in configuration design problems (Brownell, Cagan, & Kotovsky, 2021;

McComb et al., 2017a; McComb et al., 2017a). Similarly motivated, we also

employed HMMs to model VR design sequences. By analyzing their instanti-

ations using Multi-dimensional Scaling (Ghassempour, Girosi, & Maeder,

2014; Hung, Chiu, Chen, Huang, & Cheng, 2015; Suzuki, Hirasawa,

Tanaka, & Fujino, 2007), we extracted design behaviors and further analyzed

them in relation to the final design characteristics and context.
13



For the remainder of this section, we lay out the methodology of using the se-

quences of states extracted in Section 2.3 to train probabilistic models,

construct a distance matrix, and use Multi-dimensional Scaling for identifying

common design behaviors. Figure 4 shows an overview of the analysis pipeline

used for modeling and analyzing VR design processes.

2.4.1 Hidden Markov Models
We used HMMs to describe VR design sequences. Specifically, our approach is

similar to that proposed by Ghassempour et al. (2014), who translated the ill-

defined distances between two sequences into well-defined distances between

two probabilistic models. The authors did so by modeling trajectories of multi-

variate individual health data using HMMs and clustering trajectories for

qualitative interpretation. In our process, we took sequences encoded using

our VR coding scheme and trained a corresponding HMM for each unique

design process. Our approach differed from that proposed by Ghassempour

et al. (2014), in that we trained the HMM of a given design using the number

of hidden states that corresponded to the lowest Akaike’s information Criteria

(AIC). Allowing the models to differ in the number of hidden states, as

opposed to fixing them across all design sequences, enabled us to adapt model

complexities based on how complicated each design sequence is. For each

unique sequence Si, we yielded corresponding model parameters li. We further

denote the probability PðSi
��ljÞ as the average likelihood of observing sequence

Si with model parameters lj. Models were built in R, using the “seqHMM”

package (Helske & Helske, 2019).

2.4.2 Distance matrix construction
Again, following the approach detailed in Ghassempour et al. (2014), we

formulated the distance between design sequences using the symmetric

Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951) and employed.

Specifically, we approximated the distance between sequences Si and Sj for a

dataset with N design sequences by first defining the KL distance:

DKLði; jÞ¼
XN

i¼1

P0ðSijliÞlog P0ðSijliÞ
P0�Si

��lj

�

where P0ðSi
��ljÞ is the normalized probability such that

PN
i¼1P0ðSi

��ljÞ ¼ 1. The

final distance matrix D is constructed using the symmetrized KL distance be-

tween all pairwise design sequences:

Dij¼1

2
ðDKLði; jÞþDKLðj; iÞÞ

where i and j denote the indices of the two designs and the corresponding po-

sition within the symmetrical distance matrix. For sequences with previously

unseen states for a given trained model, we performed smoothing on the
Design Studies Vol 90 No. C Month 2024
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Figure 4 Analysis pipeline for describing the VR design process

---
emission matrix for the trained model. We first included all unseen states to

each hidden state, then added a small probability (0.001) to all states within

each hidden state, and finally normalized the emission matrix such that the

total emission probability for a given hidden state sums up to 1.
2.4.3 Multi-dimensional scaling
Consistent with past works that leveraged HMMs to study sequential data

(Ghassempour et al., 2014; Hung et al., 2015; Suzuki et al., 2007), we used

Multi-dimensional Scaling (MDS) to map design sequences to lower-

dimensional representations of n dimensions, all while preserving the pairwise

distances computed for the distance matrix D as much as possible. For a given

design sequence Si, we calculated an embedding of length n in the Euclidean

space, where each index corresponds to a single dimension. Two reasons moti-

vated our decision to use MDS. To start, dimensions are orthogonal, meaning

that each dimension describes a different characteristic of the design process.

Furthermore, dimensions are extracted in decreasing order of explained vari-

ance, meaning that the first dimension explains the most variance and the sec-

ond dimension, orthogonal to the first, explains the second most variance. We

can thus interpret the dimensions as design behaviors in decreasing order of

importance.

To determine the number of dimensions to use for further analysis, we exam-

ined the scree plots (i.e., eigenvalues against dimension number) for each of the

studies and selected the cutoff based on where the eigenvalues began to level

off. The scree plot criterion is a common approach for determining the number

of dimensions used for describing the underlying data (Ali-Hassan & Nevo,

2009; Hout, Papesh, & Goldinger, 2013; Jaworska & Chupetlovska-

Anastasova, 2009). We used the “stats” library in R to perform the MDS. Us-

ing the scree plot criterion, we decided to examine the first 4 dimensions for the

individual design study and the first 3 dimensions for the collaborative design

study.
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2.5 Bottom-up analysis pipeline
Following the steps of coding tracking data, extracting state sequences, build-

ing HMMs from the sequences, calculating the distance matrix, and obtaining

the MDS embeddings for each design, we leveraged the MDS dimensions to

summarize common design behaviors and analyzed their relationship with

the final design and context (Figure 4). Since the individual and collaborative

design processes are coded differently, we analyzed their design behaviors

separately. To identify common design behaviors, we visualized the feature

breakdowns for designs with the highest and lowest 10% values for each of

the dimensions for the two studies. For each dimension, we compared ratios

of categories that appear within the design sequences across the high-value

group and low-value group and described noticeable differences.

To analyze the relationship of design behaviors and the final design and

context, we built linear mixed-effects models that predicted each of the dimen-

sions with either the final design characteristics or study-specific contextual

factors modeled as fixed effects. The random effect for models built for the in-

dividual design study was participants nested within sections and groups for

the collaborative design study. If the linear mixed-effects model resulted in a

singular fit, which suggested that the random effect accounted for very little

of the variance, we dropped the random effect and instead built a linear model

for that specific dimension. We also tested models with pairwise interactions

and did not find any interaction term that was significant in the majority of

the models. We thus report results from the more parsimonious models

without interactions. All models were fitted using the “lmer” package in R,

and statistical significance evaluated at alpha¼ 0.05. Given that the numerical

values of the dimensions are not directly interpretable, we focus our analysis

on the direction and size of effect for significant predictors. Detailed descrip-

tions for the final models can be found in Appendix B.

For each model, we report effect size and their confidence intervals. As there is

no universally agreed upon approach for calculating and reporting effect sizes

for multilevel and linear mixed effect models (Jaeger, Edwards, Das, & Sen,

2017; Nakagawa & Schielzeth, 2013; Rights & Sterba, 2019), we report the

conditional and marginal R2 values as well as their confidence intervals. Mar-

ginal R2 (R2m) represents the amount of variance explained by the fixed effects

while conditional R2 (R2c) represents the amount of variance explained by

both the fixed and random effects. We used the “MuMIn” and “r2glmm”

packages in R for calculating the R2 values and confidence intervals, respec-

tively. In cases where we built a linear model for a given dimension, we report

its R2 value and confidence interval.
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3 Results
We report results from the common design behavior analysis (Section 3.1),

final design analysis (Section 3.2) and context analysis (Section 3.3). Table 3

summarizes our main findings.
3.1 Dimension of VR design behaviors
We examined the MDS dimensions extracted from the individual design study

and collaborative design study separately. Following Section 2.5, we

compared the feature breakdowns for designs with the highest 10% values

(i.e., high-value group) and lowest 10% values (i.e., low-value group) for

each of the dimensions (Figures 5 and 6). All breakdown ratios are shown

in Appendix C and D.
3.1.1 Individual design behaviors
The first dimension is related to whether a user designed more using the 3D

pen or through creating 3D objects. Designs with high dimension 1 values

are created mostly with the 3D pen e designs in the high-value group spent

on average 66.10% of the time drawing, whereas those in the low-value group

spent merely 11.96%. We also noticed that design processes that included less

3D pen actions exhibited a higher ratio of fast horizontal plane movement,

where the group that drew more (i.e., high-value group) spent 5.57% of the

time in the high motion category compared to the group that drew less (i.e.,

the low-value group) spending 15.34%.

The second dimension captures horizontal plane movement. Those in the high-

value group for the second dimension spent on average 3.16% of the time

moving in the high motion category while those in the low-value group spent

13.41%.

The third dimension is related to the frequency of manipulation. Specifically,

for creation, translation (continual), rotation (continual), and scaling

(continual), design processes in the high-value group spent on average

3.56%, 9.25%, 3.08%, and 2.67%, respectively, while those in the low-value

group spent 4.81%, 14.92%, 5.36%, 5.68%. We also noticed a difference in

horizontal plane movement, where design processes that manipulated more

moved more in the horizontal space, as the group that manipulated more

(i.e., low-value group) spent 12.84% of the time in the high movement cate-

gory, in contrast to the 6.24% for the group that manipulated less.

Finally, the fourth dimension is related to head rotation, where those in the

low-value group spent on average a greater ratio of time in the low motion cat-

egories. Specifically, the low-value group spent on average 8.65%, 8.25%, and

7.21% in the low motion categories for head yaw, roll and pitch features, in
17



Table 3 Summary of main findings for each of the MDS dimensions for the Individual and Collaborative Design Processes

Study 3.1 Dimension of Design Behaviors 3.2 Design Behaviors and Final Designs 3.3 Design Behaviors and Context

# Description Main effect(s) Effect size CI Main effect(s) Effect size CI

Individual
Design Study

1 Designing with 3D objects
vs. 3D pen

Total Number of
Objects)))
Final Design Height)))

R2c ¼ 0.30
R2m ¼ 0.13

[0.09,0.18] Design Prompt)
Teaching Assistant))
Setting)

R2c ¼ 0.31
R2m ¼ 0.12

[0.09, 0.18]

2 Amount of horizontal
plane movement

Total Number of
Objects)

R2c ¼ 0.03
R2m ¼ 0.01

[0.00,0.03] Visible space) R2c ¼ 0.06
R2m ¼ 0.03

[0.02, 0.07]

3 Frequency of
manipulation (i.e.,
creation, continual
translation, rotation, and
scaling)

Final Design Projection
Area)
Final Number of
Objects)

R2c ¼ 0.06
R2m ¼ 0.02

[0.01,0.05] Teaching Assistant) R2c ¼ 0.07
R2m ¼ 0.03

[0.02, 0.07]

4 Speed of head rotation
(i.e., yaw, roll, and pitch)

No main effect found R2c ¼ 0.07
R2m ¼ 0.00

[0.00,0.02] Design Prompt)) R2c ¼ 0.11
R2m ¼ 0.03

[0.02, 0.08]

Collaborative
Design Study

1 Frequency of
manipulation (i.e.,
creation, continual
translation, rotation, and
scaling)

Final Design Height)) R2 ¼ 0.14 [0.05, 0.37] No main effect found R2 ¼ 0.08 [0.04, 0.35]

2 Designing with 3D objects
vs. 3D pen

Total Number of
Objects)
Final Design Volume)
Final Design Projection
Area)

R2c ¼ 0.27
R2m ¼ 0.19

[0.08, 0.41] No main effect found R2c ¼ 0.13
R2m ¼ 0.07

[0.03, 0.31]

3 Amount of horizontal
plane movement

Final Design Height) R2c ¼ 0.19
R2m ¼ 0.09

[0.03, 0.31] No main effect found R2c ¼ 0.35
R2m ¼ 0.05

[0.03, 0.30]

D
esig

n
S
tu
d
ies

V
o
l
9
0
N
o
.
C

M
o
n
th

2
0
2
4

18



Figure 5 Individual design study feature breakdowns that show the ratio of different categories for each of the 12 user-level features for the high-

value and low-value groups. The main observations are outlined in red (For interpretation of the references to colour in this figure legend, the

reader is referred to the Web version of this article.)

---
contrast to the high-value group spending 4.39%, 3.68%, and 3.45%,

respectively.
3.1.2 Collaborative design behaviors
The first dimension for the collaborative design study is related to the fre-

quencies of object-related actions. The design processes in the high-value

group spent on average more time creating, deleting, and manipulating objects

e the high-value group spent on average 19.28%, 9.11%, 5.28%, and 7.79%

translating (continual), rotating (continual), scaling (continual), and adding

objects, while in contrast, the low-value group spent 36.13%, 16.23%,
19



Figure 6 Collaborative design study feature breakdowns that show the ratio of different categories for each of the 12 group-level action-related

and 15 group-level motion-related features for the high-value and low-value groups. The main observations are outlined in red (For interpreta-

tion of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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17.80%, and 10.47%. Intuitively, we also noticed that design processes with

more manipulations drew less, as the high-value group spent 14.51% of time

drawing, and the low-value group 3.66%.

The second dimension captures whether the group designed more using the 3D

pen or through 3D objects. More specifically, design processes in the high-

value group spent on average 26.76% of the time drawing using the 3D pen,

whereas the low-value group spent 0.00%. In contrast to our findings for

the individual design behaviors, the design processes with less 3D pen actions

(i.e., low-value group) exhibited slightly slower motion in the horizontal plane,

as they spent on average 96.43% of the time in the low motion category, while

the group who drew more spent 88.81%.

Finally, the third dimension is related to the amount of horizontal plane move-

ment. Specifically, the high-value group spent on average 72.13% of the time

in the high motion category for horizontal plane movement, in contrast to

27.71% for the low-value group. The high-value group also spent 89.51% of

the time in the low category for horizontal plane movement, whereas the

low-value group spent 99.62%.
3.2 Design behaviors and final designs
To determine how design behaviors led to different final designs, we calculated

4 summary characteristics for each final design. Descriptive measures of these

characteristics can be found in Appendix E. The values of the variables are

calculated at the last timestamp using all objects and drawings either created

by a single user in a given session for the individual design study, or the entire

group for the collaborative design study. The 4 summary characteristics were.

1. Total Number of Objects: the number of total objects in the final design

2. Final Design Volume (m3): the volume of a convex hull created using the

three-dimensional positions of each object and drawing in the final design

3. Final Design Height (m): the height difference between the highest and

lowest object or drawing in the final design

4. Final Design Projection Area (m2): the area of the projection of the

created convex hull onto the horizontal plane

Following Section 2.5, we built linear mixed-effects models using the 4 sum-

mary characteristics as fixed effects to predict each MDS dimension. Predict-

ing dimension 1 for the collaborative design study resulted in a singular fit,

which suggested that group accounted for very little of the variance when pre-

dicting dimension 1. We therefore dropped the random effect of group and

built a linear model.
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3.2.1 Individual design behaviors and final designs
For dimension 1, there were significant main effects on the Total Number of

Objects (p < .001) and Final Design Height (p < .001). The directions for

both coefficients were negative, and we interpret this as design processes

that included more 3D pen actions (higher dimension 1 values) tended to

lead to final designs with fewer objects that span a narrower vertical space.

The effect size of the model was R2c ¼ 0.30, R2m ¼ 0.13, CI [0.09, 0.18].

For dimension 2, there was a main effect on Total Number of Objects

(p ¼ .043). The direction of the coefficient was negative. Since lower values

in dimension 2 is related to faster horizontal plane movement, this suggests

that faster horizontal movements yielded final designs with more objects.

For dimension 3, there were main effects of the Final Design Projection

Area (p ¼ .027) and the Total Number of Objects (p ¼ .032). The directions

of both coefficients were negative. We interpret this as design processes with

a higher frequency of manipulation (lower dimension 3 values) yielding de-

signs with more objects that also spread over a greater area in the horizontal

plane. Finally, we found no significant main effect for dimension 4. The effect

sizes for the models predicting dimensions 2, 3, and 4 were smaller than that

for dimension 1: the effect size for dimension 2 was R2c ¼ 0.03,

R2m ¼ 0.01, CI [0.00, 0.03], for dimension 3 was R2c ¼ 0.06, R2m ¼ 0.02,

CI [0.01, 0.05], and for dimension 4 was R2c ¼ 0.07, R2m ¼ 0.00, CI [0.00,

0.02].
3.2.2 Collaborative design behaviors and final designs
For dimension 1, there was a main effect of Final Design Height (p ¼ .004).

The direction of effect for the significant predictor was positive, which we

interpret as lower frequencies of object-related actions (higher values in dimen-

sion 1) resulting in final designs spanning a greater vertical space. The effect

size for this model was R2 ¼ 0.14, CI [0.05, 0.37]. For dimension 2, there

were main effects on the Total Number of Objects (p ¼ .040), Final Design

Volume (p ¼ .018), and Final Design Projection Area (p ¼ .023). The direc-

tions of effect for the Total Number of Objects and Final Design Projection

Area were positive. The direction of effect for the Final Design Volume was

negative. This result suggests that design processes with more 3D pen actions

(higher values in dimension 2) will likely yield final designs with less volume,

more objects, and a greater projection area in the horizontal space. This model

had an effect size of R2c ¼ 0.27, R2m ¼ 0.19, CI [0.08, 0.41]. For dimension 3,

there was a main effect on Final Design Height (p ¼ .044). The direction of ef-

fect was negative, which we interpret as faster horizontal movement (higher

values in dimension 3) yielding designs that span a narrower vertical space.

The model built for dimension 3 had an effect size of R2c ¼ 0.09,

R2m ¼ 0.18, CI [0.03, 0.31].
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3.3 Design behaviors and context
In this section, we present findings on how contextual-related variables affect

students’ design behaviors. As the context-related variables differed between

the Individual and Collaborative Design Studies, we describe these variables

separately in Sections 3.3.1 and 3.3.2.

3.3.1 Individual design behaviors and context
There were 5 context-related variables for the individual design study. They

were the 7 open-ended design activities spread across each week, the 3 teaching

assistants prompting and overseeing the activities, the setting (indoor and out-

door), the amount of visible space (panoramic and constrained), and the num-

ber of students in a given session.

For the first dimension, we found main effects of the design prompt (p¼ .032),

teaching assistants (p ¼ .001), and the setting (p ¼ .035). Compared to the

reference setting category of indoor, the coefficient found for outdoor was

negative, which suggests that those creating in outdoor environments tended

to create more using 3D objects and not the 3D pen. The effect size for the

model predicting dimension 1 was R2c ¼ 0.31, R2m ¼ 0.12, CI [0.09, 0.18].

For the second dimension, we found a main effect of visible space (p¼ .041). In

comparison to the reference category of constrained environments, the coeffi-

cient found for panoramic environments was negative, suggesting that stu-

dents moved more in the horizontal space in panoramic environments. For

the third dimension, we found a significant main effect on teaching assistants

(p ¼ .033), which suggested that instructor style influenced how much a stu-

dent manipulated throughout their design process. Finally, for the fourth

dimension, we found a significant main effect of the design prompt

(p ¼ .003), suggesting that different design prompts influenced head rotation.

The effect sizes for the models predicting dimensions 2, 3, and 4 were again

smaller than dimension 1. Specifically, the effect size of the model for dimen-

sion 2 was R2c ¼ 0.06, R2m ¼ 0.03, CI [0.02, 0.07], for dimension 3 was

R2c ¼ 0.07, R2m ¼ 0.03, CI [0.02, 0.07], for dimension 4 was R2c ¼ 0.11,

R2m ¼ 0.03, CI [0.02, 0.08].

3.3.2 Collaborative design behaviors and context
For the collaborative design study, there were 4 context-related variables,

namely the 3 different design prompts, the ceiling height (tall and low), the

amount of visible space (panoramic and constrained), and the number of par-

ticipants in the group. The linear mixed-effects model predicting dimension 1

resulted in a singular fit, so we dropped the random effect of group and built a

linear model. In the three models predicting each of the MDS dimensions

based on the context-related variables, we found no significant main effect.

We attribute this to a limited number of designs as some of the groups did
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not load in the virtual environments properly and had to be dropped from this

analysis. The effect size for the linear model predicting dimension 1 was

R2c ¼ 0.08, CI [0.04, 0.35], while that for the linear mixed-effects models pre-

dicting dimensions 2 and 3 had effect sizes of R2c¼ 0.13, R2m¼ 0.07, CI [0.03,

0.31] and R2c ¼ 0.35, R2m ¼ 0.05, CI [0.03, 0.30], respectively.
4 Discussion
We discuss our findings and their practical design implications in two aspects.

First, we contextualize our findings within how designers and educators can

leverage VR as a tool to make inferences about design behaviors. Next, we

outline considerations regarding the structure of activities and the design of

VR systems for practitioners seeking to organize immersive design activities.
4.1 VR as a tool to study the design process
Using our coding schemes and analytical approach, we found that the com-

mon VR design behaviors closely paralleled the physical action categories out-

lined by Suwa et al. (1998). In particular, the tools used (i.e., 3D pen or 3D

objects) and frequency of manipulation described the making of depictions

(D-action), the speed of head rotation was related to the L-action, and the hor-

izontal plane movement was captured by the category of physical actions that

do not directly alter the design (M-action). Similarly, we can interpret the

design behaviors of horizontal plane movement and head rotation as an exten-

sion of the change view transformation described in Prats et al.’s general shape

transformations (2009). Despite these similarities, the extrapolated design be-

haviors are not explicitly described in prior frameworks (Prats et al., 2009;

Sopher & Dorta, 2023, pp. 423e440; Suwa et al., 1998), suggesting that prac-

titioners who wish to use VR for characterizing design processes should seek to

establish a holistic understanding of the tools and action space made available

to individuals in design activities. Failure to capture the relevant parameters of

interest can hinder practitioners from extrapolating valuable insights of the

design process. While some tools and actions may be platform-dependent, it

is also important to consider how broader constraints such as simulator sick-

ness from virtual locomotion, individual differences in physical setups and VR

sickness susceptibility, abilities, and disabilities can affect one’s utilization of

these resources (E. Chang, Kim, & Yoo, 2020; Nabors, Monnin, & Jimenez,

2020; Saker & Frith, 2020).

In this work, we also proposed an approach for translating the granular low-

level tracking data into higher-level features characterizing the design process

without using verbal protocol analysis, which allowed us to systematically

examine design processes at scale. Similar in motivation to works that utilize

behavioral and tracking data for studying design processes (Mill�an et al., 2022;

Rahman et al., 2021), we demonstrated that these bottom-up analyses can also

be applied to more open-ended design tasks, be adapted to both individual and
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collaborative tasks, and yield informative insights. Ultimately, as VR im-

merses individuals in controllable environments while logging granular

tracking data (Blascovich et al., 2002), practitioners can leverage our approach

to bridge the gap between low-level actions and higher-level design behaviors

and extend our understanding of the design processes of individuals with

different genders (Baer & Kaufman, 2008; Cheng, Sanchez-Burks, & Lee,

2008), cultures (Thoring, Luippold, & Mueller, 2014), and levels of design

expertise (Rahman et al., 2021).
4.2 Organizing design activities in VR
Our results revealed common design behaviors (i.e., the amount of horizontal

plane movement, frequency of manipulation, choice of tool used) across the

individual and collaborative design studies. That being said, in line with

past findings comparing creative thinking between individuals and groups

(Taylor, Berry, & Block, 1958; Youmans, 2011), our findings suggest that

practitioners should be mindful of the formulation of design tasks and

consider whether the task will be completed individually or collaboratively,

with or without an instructor. This is because while the extracted design behav-

iors for the individual and collaborative design studies overlapped, our find-

ings showed that the same design behavior can lead to different final design

characteristics depending on whether the task is completed individually or

collaboratively.

For example, we found that design processes with more 3D pen actions

yielded final designs with fewer 3D objects spanning a narrower vertical

space for the individual design tasks, but more 3D objects spanning a

greater horizontal space for the collaborative design tasks. We hypothesize

that participants who responded to prompts individually likely used the 3D

pen to sketch out their ideas, while those responding in groups likely used

3D pens to label and help explain complex designs with more 3D objects.

Another possible reason is that students designing individually were able

to explain their designs to the teaching assistant and others during the syn-

chronous discussion sections, whereas those designing collaboratively were

under the impression that the final designs will be evaluated asynchro-

nously, and thus warranted more clarity and “labeling” using the 3D

pen. Additionally, our results revealed that the amount of horizontal plane

movement and frequency of manipulations yielded different effects on the

final design characteristics across the two studies. For these two behaviors,

we also found that the effect sizes of the models built for the individual

design study were substantially smaller than those for the collaborative

design study.

Broadly speaking, organizers should be mindful of the context in which design

activities occur. In analyzing how context is related to design behaviors, we
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showed that factors such as design prompts, teaching assistants, amount of

visible space, and setting influenced individual design behaviors. Particularly,

the effect that context has on whether a student designs with 3D objects or the

3D pen is noticeably greater than the other three dimensions. In demonstrating

how contextual factors can also influence dimensions of design behaviors, our

results extend past findings on the psychological effects of teaching style

(Inayat & Ali, 2020;Michel et al., 2009), visible space (Han et al., 2023), setting

(Han et al., 2023; Minocha & Reeves, 2010), and task type (Miller et al., 2021;

Yoon et al., 2023).

When organizing design activities for designers and students, it is therefore

important to consider whether the activities should be hosted in different en-

vironments, and whether their potential effects on design behaviors is desir-

able and appropriate for the given scenario. For example, for educators

hoping to evaluate students through VR design activities, it may be neces-

sary to develop grading rubrics that do not associate performance directly

with the one’s design behaviors (e.g., amount of virtual movement, choice

of tools). As VR can immerse remote users into the same virtual environ-

ment across time (Blascovich et al., 2002), another way for mitigating these

contextual effects is to instruct students and designers to instantiate the same

virtual environment and respond to the same design prompt. Finally, educa-

tors and designers can also build VR systems that automatically checks for

inconsistencies in context across different virtual sessions and adjust environ-

ments accordingly.
5 Limitations and future work
There are several limitations to our work. To start, we limited our analysis to

the first few dimensions of each of the MDS projections, which captured dif-

ferences in the aggregated distribution breakdowns of actions and motions.

While later dimensions did not capture as much information compared to

earlier ones and are therefore not examined based on our scree plot criterion,

later dimensions could reveal more subtle design behaviors such as the order

and length of operations. When comparing design processes using later dimen-

sions, researchers can consider examining characteristics of the HMMs such as

the transition routes, state emission, and transition matrices (Goucher-

Lambert & McComb, 2019; Hu et al., 2023; Mehta et al., 2020).

Relatedly, future work should examine other aspects of the final designs such

as the spatial arrangement, type, color, and size of the 3D objects and draw-

ings. Additionally, as the design behavior observed in the tracking data is

limited to the types of tools and interaction techniques available through the

ENGAGE platform, the dimensions of design behavior we identified are

platform-dependent. Therefore, we believe that future work should adapt
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our coding schemes and analysis pipeline to other digital platforms to uncover

additional design behaviors and assess the generalizability of our findings.

Furthermore, as we did not collect verbal protocols from the students, we were

unable to label action categories beyond the physical and perceptual dimen-

sions (Suwa et al., 1998). Future work can consider leveraging verbal protocol

analysis to investigate how action and motion in VR relate to functional and

conceptual actions. Since protocol analysis is prone to subjective factors as it

inherently relies on the designer’s recollection of their thought process and ac-

tions, researchers can also integrate objective biometric data such as electroen-

cephalography and eye tracking into the analysis pipeline (Borgianni &

Maccioni, 2020; Goucher-Lambert, Moss, & Cagan, 2019; Yu, Schubert, &

Gu, 2023). For example, one can encode these measurements as additional fea-

tures into our coding scheme or analyze them in conjunction with our analysis

pipeline. Using biometric measurements and protocol analysis, we envision

future research investigating how dimensions of VR design behavior are

related to cognitive load, creativity, ideation, and high-level design strategies.

Another area for future work is on extending our coding scheme for collabo-

rative tasks to encode measurements of group dynamics such as synchrony

(Miller et al., 2021; Sun, Shaikh, & Won, 2019; Tarr, Slater, & Cohen,

2018), interpersonal distance (Bailenson, Blascovich, Beall, & Loomis, 2003;

Kolkmeier, Vroon, & Heylen, 2016), and turn-taking (S. J. Gero & Kan,

2009; Reid &Reed, 2000). Finally, while our approach quantified distances be-

tween design processes using KL divergence, future work can explore other

ways for defining these distances.
6 Conclusions
In this work, we collected and studied 730 unique designs from 254 students in

VR. Specifically, we (1) developed a VR design coding scheme based on pre-

vious theoretical frameworks and (2) proposed a bottom-up analysis pipeline

for describing the individual and collaborative VR design processes. Using the

proposed techniques, we then summarized the types of design behaviors and

examined their relationship with the final designs and context. We found evi-

dence showing that different design behaviors yielded different final designs,

and that similar behaviors such as drawing with the 3D pen result in different

final design characteristics for those creating individually and collaboratively.

Furthermore, in the case of individual design tasks, context (i.e., design activ-

ities, setting, amount of visible space, teaching assistants) was closely related to
27



the students’ design behaviors. By introducing a tool that leverages the rich

tracking data to study the VR design process and outlining the broader prac-

tical implications, we hope to encourage further research on the immersive

design process and lower the friction for designers and educators to structure

and study design activities in VR.
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Appendix.

Appendix A. Floor and ceiling values for motion-related
features

Motion-related Features Floor Ceiling
Design Studies Vol 90 No

28
. C Mont
Head yaw rotation
 �10
 0

Head pitch rotation
 �10
 0

Head roll rotation
 �10
 0

Slower hand movement (Individual design coding scheme)
 �10
 0

Faster hand movement (Individual design coding scheme)
 �10
 0

Horizontal plane movement
 �10
 5

Mean hand movement (Collaborative design coding scheme)
 �10
 0
h 2024
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Appendix B1.Model equations for analyzing the relationship
between the dimensions of design behavior and final design
characteristics

Study Dimension Model Type Model Expression
29
Individual
Design
Study
1, 2, 3, 4
 Linear
mixed-effects
Value associated with the design process of
student i in section s for design prompt p is
modeled as dimensionpis ¼ b0 þ
b1ðobject countpisÞ þ b2ðvolumepisÞ þ
b3ðheightpisÞ þ b4ðprojection areapisÞ þ
v00s þ u0is þ epis where b0 represents the
intercept, b1, b2, b3, and b4 describe how
the total number of objects, final design
volume, final design height, and final
design projection area are related to the
dimension value, and v00s, u0is and epis are
assumed to be normally distributed with
standard deviations sv, su and se,
respectively.
Collaborative
Design Study
1
 Linear)
 Value associated with the design process of
group i for design prompt p is modeled as
dimensionpi ¼ b0 þ b1ðobject countpiÞ þ
b2ðvolumepiÞ þ b3ðheightpiÞ
þb4ðprojection areapiÞ þ epi where b0

represents the intercept, b1, b2, b3, and b4

describe how the total number of objects,
final design volume, final design height,
and final design projection area are related
to the dimension value, and epi are
assumed to be normally distributed with
standard deviation se.
2, 3
 Linear
mixed-effects
Value associated with the design process of
group i for design prompt p is modeled as
dimensionpi ¼ b0 þ b1ðobject countpiÞ þ
b2ðepiÞ þ b3ðheightpiÞ
þb4ðprojection areapiÞ þ u0i þ epi where b0

represents the intercept, b1, b2, b3, and b4

describe how the total number of objects,
final design volume, final design height,
and final design projection area are related
to the dimension value, and u0i and epi are
assumed to be normally distributed with
standard deviations su and se,
respectively.
)The linear mixed-effects model built to predict dimension 1 of the collaborative design pro-
cess resulted in a singular fit, which prompted us to use a linear model instead.



Appendix B2.Model equations for analyzing the relationship
between the dimensions of design behavior and context

Study Dimension Model Type Model Expression
D

30
Individual
Design
Study
1, 2, 3, 4
 Linear
mixed-effects
Value associated with the design process of
student i in section s for prompt p is modeled
as dimensionpis ¼ b0 þ b1ðdesign promptpisÞ þ
b2ðteaching assistantpisÞ þ b3ðsettingpisÞ
þb4ðvisible spacepisÞ þ b5ðnumber of
studentpisÞ þ v00s þ u0is þ epis where b0

represents the intercept, b1, b2, b3, b4, and b5

describe how design prompts, teaching
assistants, setting (indoor and outdoor),
visible space (panoramic and constrained),
and the number of students are related to the
dimension value, and v00s, u0is and epis are
assumed to be normally distributed with
standard deviations sv, su, and se,
respectively.
Collaborative
Design Study
1
 Linear)
 Value associated with the design process of
group i for design prompt p is modeled as
dimensionpi ¼ b0 þ b1ðdesign promptpiÞ þ
b2ðceiling heightpiÞ þ b3ðvisible spacepiÞ þ
b4ðnumber of studentspiÞ þ epi where b0

represents the intercept, b1, b2, b3, and b4

describe how design prompts, ceiling height
(tall and low), visible space (panoramic and
constrained), and the number of students are
related to the dimension value, and epi is
assumed to be normally distributed with
standard deviation se.
2, 3
 Linear
mixed-effects
Value associated with the design process of
group i for design prompt p is modeled as
dimensionpi ¼ b0 þ b1ðdesign promptpiÞ þ
b2ðceiling heightpiÞ þ b3ðvisible spacepiÞ þ b

4ðnumber of studentspiÞ þ u0i þ epi where b0

represents the intercept, b1, b2, b3, and b4

describe how design prompts, ceiling height
(tall and low), visible space (panoramic and
constrained), and the number of students are
related to the dimension value, and u0i and epi
are assumed to be normally distributed with
standard deviations su and se, respectively.
)The linear mixed-effects model built to predict dimension 1 of the collaborative design pro-
cess resulted in a singular fit, which prompted us to use a linear model instead.
esign Studies Vol 90 No. C Month 2024
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Appendix C1.Individual design study dimension 1 breakdown
ratios

Feature Name Group Feature Value Percentage
31
Translating 3D Object
 High-value
 No
 92.77

Yes (Revisited)
 0.70

Yes (Continual)
 6.53
Low-value
 No
 84.85

Yes (Revisited)
 3.69

Yes (Continual)
 11.46
Rotating 3D Object
 High-value
 No
 98.55

Yes (Revisited)
 0.05

Yes (Continual)
 1.40
Low-value
 No
 94.55

Yes (Revisited)
 0.93

Yes (Continual)
 4.52
Scaling 3D Object
 High-value
 No
 98.31

Yes (Revisited)
 0.03

Yes (Continual)
 1.66
Low-value
 No
 94.89

Yes (Revisited)
 0.75

Yes (Continual)
 4.37
Adding 3D Object
 High-value
 No
 96.82

Yes
 3.18
Low-value
 No
 95.86

Yes
 4.14
Deleting 3D Object
 High-value
 No
 99.63

Yes
 0.37
Low-value
 No
 98.83

Yes
 1.17
Is Drawing
 High-value
 No
 33.40

Yes
 66.60
Low-value
 No
 88.04

Yes
 11.96
Head Yaw
 High-value
 High
 60.04

Low
 3.68

Moderate
 36.28
Low-value
 High
 55.26

Low
 6.66

Moderate
 38.08
Head Roll
 High-value
 High
 74.38

Low
 2.91

Moderate
 22.71
Low-value
 High
 66.58

Low
 6.28

Moderate
 27.14
Head Pitch
 High-value
 High
 79.56

Low
 2.65

Moderate
 17.79
Low-value
 High
 73.00

Low
 5.82

Moderate
 21.18
(continued on next page)



(continued )
Feature Name
32
Group
Design Stu
Feature Value
dies Vol 90 No. C M
Percentage
Horizontal
Plane
Movement
High-value
 High
 5.57

Low
 88.55

Moderate
 5.88
Low-value
 High
 15.34

Low
 77.99

Moderate
 6.67
Hand Max Movement
 High-value
 High
 95.68

Low
 1.53

Moderate
 2.79
Low-value
 High
 90.39

Low
 3.20

Moderate
 6.40
Hand Min Movement
 High-value
 High
 86.17

Low
 3.24

Moderate
 10.59
Low-value
 High
 72.41

Low
 6.21

Moderate
 21.38
Appendix C2.Individual design study dimension 2 breakdown
ratios

Feature Name Group Feature Value Percentage
Translating 3D Object
 High-value
 No
 89.61

Yes (Revisited)
 1.90

Yes (Continual)
 8.49
Low-value
 No
 83.09

Yes (Revisited)
 3.45

Yes (Continual)
 13.46
Rotating 3D Object
 High-value
 No
 96.43

Yes (Revisited)
 0.45

Yes (Continual)
 3.13
Low-value
 No
 94.78

Yes (Revisited)
 0.70

Yes (Continual)
 4.52
Scaling 3D Object
 High-value
 No
 97.43

Yes (Revisited)
 0.35

Yes (Continual)
 2.22
Low-value
 No
 94.44

Yes (Revisited)
 0.60

Yes (Continual)
 4.96
(continued on next page)
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(continued )
Feature Name
33
Group
 Feature Value
 Percentage
Adding 3D Object
 High-value
 No
 97.09

Yes
 2.91
Low-value
 No
 95.58

Yes
 4.42
Deleting 3D Object
 High-value
 No
 99.45

Yes
 0.55
Low-value
 No
 98.80

Yes
 1.20
Is Drawing
 High-value
 No
 72.54

Yes
 27.46
Low-value
 No
 81.35

Yes
 18.65
Head Yaw
 High-value
 High
 61.42

Low
 3.68

Moderate
 34.90
Low-value
 High
 49.33

Low
 8.10

Moderate
 42.56
Head Roll
 High-value
 High
 73.54

Low
 3.21

Moderate
 23.26
Low-value
 High
 60.59

Low
 7.71

Moderate
 31.70
Head Pitch
 High-value
 High
 79.59

Low
 2.96

Moderate
 17.46
Low-value
 High
 70.43

Low
 6.81

Moderate
 22.76
Horizontal Plane Movement
 High-value
 High
 3.16

Low
 94.53

Moderate
 2.31
Low-value
 High
 13.41

Low
 81.73

Moderate
 4.86
Hand Max Movement
 High-value
 High
 94.01

Low
 1.59

Moderate
 4.40
Low-value
 High
 88.52

Low
 3.98

Moderate
 7.50
Hand Min Movement
 High-value
 High
 81.42

Low
 6.58

Moderate
 12.00
Low-value
 High
 66.23

Low
 9.47

Moderate
 24.31



Appendix C3.Individual design study dimension 3 breakdown
ratios

Feature Name Group Feature Value Percentage
34
Design Stud
ies Vol 90 No. C M
Translating 3D Object
 High-value
 No
 88.38

Yes (Revisited)
 2.37

Yes (Continual)
 9.25
Low-value
 No
 82.21

Yes (Revisited)
 2.87

Yes (Continual)
 14.92
Rotating 3D Object
 High-value
 No
 96.42

Yes (Revisited)
 0.50

Yes (Continual)
 3.08
Low-value
 No
 94.22

Yes (Revisited)
 0.43

Yes (Continual)
 5.36
Scaling 3D Object
 High-value
 No
 97.01

Yes (Revisited)
 0.32

Yes (Continual)
 2.67
Low-value
 No
 93.64

Yes (Revisited)
 0.68

Yes (Continual)
 5.68
Adding 3D Object
 High-value
 No
 96.44

Yes
 3.56
Low-value
 No
 95.19

Yes
 4.81
Deleting 3D Object
 High-value
 No
 99.18

Yes
 0.82
Low-value
 No
 98.67

Yes
 1.33
Is Drawing
 High-value
 No
 72.72

Yes
 27.28
Low-value
 No
 78.49

Yes
 21.51
Head Yaw
 High-value
 High
 55.39

Low
 6.43

Moderate
 38.19
Low-value
 High
 43.30

Low
 8.73

Moderate
 47.97
Head Roll
 High-value
 High
 67.37

Low
 5.62

Moderate
 27.00
Low-value
 High
 56.82

Low
 8.57

Moderate
 34.62
Head Pitch
 High-value
 High
 72.95

Low
 5.41

Moderate
 21.64
Low-value
 High
 67.42

Low
 7.55

Moderate
 25.03
(continued on next page)
onth 2024
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(continued )
Feature Name
Feature Name

Translating 3D Object

Rotating 3D Object

Scaling 3D Object

Adding 3D Object

35
Group
Group

High-value

Low-value

High-value

Low-value

High-value

Low-value

High-value

Low-value
Feature Value
Feature Value

No
Yes (Revisited)
Yes (Continual)
No
Yes (Revisited)
Yes (Continual)
No
Yes (Revisited)
Yes (Continual)
No
Yes (Revisited)
Yes (Continual)
No
Yes (Revisited)
Yes (Continual)
No
Yes (Revisited)
Yes (Continual)
No
Yes
No
Yes

(continued on
Percentage
Horizontal Plane Movement
 High-value
 High
 6.24

Low
 90.83

Moderate
 2.94
Low-value
 High
 12.84

Low
 80.51

Moderate
 6.65
Hand Max Movement
 High-value
 High
 88.99

Low
 5.12

Moderate
 5.89
Low-value
 High
 88.29

Low
 3.62

Moderate
 8.09
Hand Min Movement
 High-value
 High
 71.39

Low
 10.73

Moderate
 17.88
Low-value
 High
 64.87

Low
 8.93

Moderate
 26.19
Appendix C4.Individual design study dimension 4 breakdown
ratios
Percentage

89.13
1.36
9.51
84.95
3.78
11.27
96.76
0.17
3.07
94.67
1.19
4.14
96.28
0.18
3.54
95.48
0.78
3.75
96.63
3.37
95.11
4.89

next page)



(continued )

Feature Name Group Feature Value Percentage

Deleting 3D Object High-value No 99.37
Yes 0.63

Low-value No 98.77
Yes 1.23

Is Drawing High-value No 65.32
Yes 34.68

Low-value No 65.36
Yes 34.64

Head Yaw High-value High 62.24
Low 4.39
Moderate 33.37

Low-value High 46.47
Low 8.65
Moderate 44.88

Head Roll High-value High 74.24
Low 3.68
Moderate 22.08

Low-value High 61.83
Low 8.25
Moderate 29.92

Head Pitch High-value High 80.28
Low 3.45
Moderate 16.27

Low-value High 69.83
Low 7.21
Moderate 22.97

Horizontal Plane Movement High-value High 8.67
Low 85.59
Moderate 5.74

Low-value High 9.27
Low 84.85
Moderate 5.89

Hand Max Movement High-value High 93.75
Low 2.32
Moderate 3.93

Low-value High 91.44
Low 2.45
Moderate 6.11

Hand Min Movement High-value High 82.40
Low 4.76
Moderate 12.85

Low-value High 69.07
Low 6.88
Moderate 24.04
Appendix D1.Collaborative design study dimension 1
percentages of positive labels
We only report the percentage for each of the features being labeled positive as

the percentage of the negative label can be obtained by subtracting the positive

percentage from 100. For example, the high-value group spent 7.79% of the

time adding objects, and 92.21% of the time not adding 3D objects.
Design Studies Vol 90 No. C Month 2024
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Feature Name Group Percentage

Adding 3D Object High-value 7.79
Low-value 10.47

Deleting 3D Object High-value 4.08
Deleting 3D Object
Low-value

4.71

Is Drawing High-value 14.51
Is Drawing
Low-value

3.66

Not Translating 3D Object High-value 99.75
Not Translating 3D Object
Low-value

97.91

Translating 3D Object (Revisited) High-value 5.53
Translating 3D Object (Revisited)
Low-value

1.57

Translating 3D Object (Continual) High-value 19.28
Translating 3D Object (Continual)
Low-value

36.13

Not Rotating 3D Object High-value 100.00
Not Rotating 3D Object
Low-value

99.48

Rotating 3D Object (Revisited) High-value 1.70
Rotating 3D Object (Revisited)
Low-value

0.00

Rotating 3D Object (Continual) High-value 9.11
Rotating 3D Object (Continual)
Low-value

16.23

Not Scaling 3D Object High-value 100.00
Not Scaling 3D Object
Low-value

100.00

Scaling 3D Object (Revisited) High-value 0.63
Scaling 3D Object (Revisited)
Low-value

0.00

Scaling 3D Object (Continual) High-value 5.28
Scaling 3D Object (Continual)
Low-value

17.80

Head Yaw Low High-value 7.85
Head Yaw Low
Low-value

4.19

Head Yaw Moderate High-value 78.02
Head Yaw Moderate
Low-value

79.58

Head Yaw High High-value 94.79
Head Yaw High
Low-value

96.34

Head Roll Low High-value 5.72
Head Roll Low
Low-value

5.76

Head Roll Moderate High-value 62.06
Head Roll Moderate
Low-value

71.20

Head Roll High High-value 98.43
Head Roll High
Low-value

98.95

(continued on next page)

---
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(continued )

Feature Name Group Percentage

Head Pitch Low High-value 6.09
Head Pitch Low
Low-value

1.57

Head Pitch Moderate High-value 48.12
Head Pitch Moderate
Low-value

61.78

Head Pitch High High-value 98.56
Head Pitch High
Low-value

98.43

Horizontal Movement Low High-value 95.16
Horizontal Movement Low
Low-value

97.91

Horizontal Movement Moderate High-value 29.77
Horizontal Movement Moderate
Low-value

19.37

Horizontal Movement High High-value 49.81
Horizontal Movement High
Low-value

49.74

Hand Movement Low High-value 4.77
Hand Movement Low
Low-value

2.62

Hand Movement Moderate High-value 19.22
Hand Movement Moderate
Low-value

11.52

Hand Movement High High-value 99.94
Hand Movement High
Low-value

100.00
Appendix D2.Collaborative design study dimension 2
percentages of positive labels
Feature Name Group Percentage

Adding 3D Object High-value 8.16
Adding 3D Object
Low-value

10.86

Deleting 3D Object High-value 3.57
Deleting 3D Object
Low-value

5.00

Is Drawing High-value 26.76
Is Drawing
Low-value

0.00

Not Translating 3D Object High-value 100.00
Not Translating 3D Object
Low-value

99.86

(continued on next page)
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(continued )

Feature Name Group Percentage

Translating 3D Object (Revisited) High-value 3.08
Translating 3D Object (Revisited)
Low-value

1.14

Translating 3D Object (Continual) High-value 20.54
Translating 3D Object (Continual)
Low-value

28.86

Not Rotating 3D Object High-value 100.00
Not Rotating 3D Object
Low-value

100.00

Rotating 3D Object (Revisited) High-value 0.65
Rotating 3D Object (Revisited)
Low-value

0.14

Rotating 3D Object (Continual) High-value 8.70
Rotating 3D Object (Continual)
Low-value

12.14

Not Scaling 3D Object High-value 100.00
Not Scaling 3D Object
Low-value

100.00

Scaling 3D Object (Revisited) High-value 0.65
Scaling 3D Object (Revisited)
Low-value

0.00

Scaling 3D Object (Continual) High-value 8.76
Scaling 3D Object (Continual)
Low-value

5.29

Head Yaw Low High-value 8.54
Head Yaw Low
Low-value

7.86

Head Yaw Moderate High-value 64.22
Head Yaw Moderate
Low-value

82.57

Head Yaw High High-value 96.86
Head Yaw High
Low-value

90.71

Head Roll Low High-value 6.86
Head Roll Low
Low-value

6.57

Head Roll Moderate High-value 47.08
Head Roll Moderate
Low-value

67.14

Head Roll High High-value 98.59
Head Roll High
Low-value

97.14

Head Pitch Low High-value 6.27
Head Pitch Low
Low-value

6.00

Head Pitch Moderate High-value 39.35
Head Pitch Moderate
Low-value

53.86

(continued on next page)

---
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(continued )

Feature Name Group Percentage

Head Pitch High High-value 99.14
Head Pitch High
Low-value

98.29

Horizontal Movement Low High-value 88.81
Horizontal Movement Low
Low-value

96.43

Horizontal Movement Moderate High-value 40.97
Horizontal Movement Moderate
Low-value

25.00

Horizontal Movement High High-value 54.70
Horizontal Movement High
Low-value

46.86

Hand Movement Low High-value 9.57
Hand Movement Low
Low-value

8.29

Hand Movement Moderate High-value 8.86
Hand Movement Moderate
Low-value

15.57

Hand Movement High High-value 100.00
Hand Movement High
Low-value

99.86
Appendix D3.Collaborative design study dimension 3
percentages of positive labels
Feature Name Group Percentage

Adding 3D Object High-value 11.21
Low-value 8.21

Deleting 3D Object High-value 4.31
Low-value 4.55

Is Drawing High-value 3.16
Low-value 13.95

Not Translating 3D Object High-value 98.85
Low-value 100.00

Translating 3D Object (Revisited) High-value 5.46
Low-value 5.74

Translating 3D Object (Continual) High-value 28.74
Low-value 18.50

Not Rotating 3D Object High-value 99.86
Low-value 100.00

Rotating 3D Object (Revisited) High-value 1.58
Low-value 1.77

Rotating 3D Object (Continual) High-value 12.79
Low-value 9.41

Not Scaling 3D Object High-value 100.00
Low-value 100.00

(continued on next page)

Design Studies Vol 90 No. C Month 2024

40



(continued )

Feature Name Group Percentage

Scaling 3D Object (Revisited) High-value 1.44
Low-value 0.44

Scaling 3D Object (Continual) High-value 11.78
Low-value 4.23

Head Yaw Low High-value 5.32
Low-value 5.49

Head Yaw Moderate High-value 78.02
Low-value 69.38

Head Yaw High High-value 95.26
Low-value 96.28

Head Roll Low High-value 4.45
Low-value 3.85

Head Roll Moderate High-value 63.65
Low-value 48.48

Head Roll High High-value 98.99
Low-value 98.61

Head Pitch Low High-value 4.89
Low-value 3.85

Head Pitch Moderate High-value 43.68
Low-value 43.81

Head Pitch High High-value 99.14
Low-value 98.74

Horizontal Movement Low High-value 89.51
Low-value 99.62

Horizontal Movement Moderate High-value 34.63
Low-value 25.57

Horizontal Movement High High-value 72.13
Low-value 27.71

Hand Movement Low High-value 4.74
Low-value 2.84

Hand Movement Moderate High-value 7.33
Low-value 14.77

Hand Movement High High-value 100.00
Low-value 99.94

---
Appendix E.Individual design study and collaborative design
study means and standard deviations (in parentheses) of the
4 final design summary characteristics
Individual Design
Study

Collaborative Design
Study

Total Number of Objects 5.37 (5.49) 13.22 (18.90)
Final Design Volume ðm3Þ 396.87 (8082.14) 1870.03 (11 972.94)
Final Design Height ðmÞ 2.89 (13.30) 3.99 (7.15)
Final Design Projection Area ðm2Þ 11.54 (83.59) 40.73 (151.60)
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