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Abstract—Virtual and augmented reality devices track the
body motion of users because it is fundamental to rendering
virtual content anchored to space. However, this same body
motion data can be used as a biometric to identify users. Research
on the effectiveness of these biometrics are often difficult to
compare between because the common evaluation metric, rank-1
accuracy, is relative to the number of identities within the set. In
this work, I motivate, select, and justify the use of a previously
introduced classification model evaluation metric, multiclass AUC,
that is invariant to the number of classes (i.e., individuals) being
identified, producing more effective comparisons across disparate
datasets, activities, and participant pool sizes. I also generalize
this metric with regular rank-1 accuracy to produce N-class
accuracy, allowing future work to compare to past work when
multiclass AUC is not reported. The common use of this metric
will allow a finer view of patterns in identifiability of this motion
data, ultimately resulting in clearer research conclusions when
comparing across works.

Index Terms—virtual reality, motion as biometric, multiclass
AUC,

I. INTRODUCTION

Virtual and augmented reality devices track the body motion

of users because it is fundamental to rendering virtual content

anchored to space. However, this same body motion data can

be used as a biometric to identify users [1]–[4]. Identification-

focused works almost exclusively use accuracy for the model’s

evaluation metric. The benefits of accuracy as a metric include

its ease of interpretation and its directness to the question at

hand - a model with less accuracy is obviously less identifiable,

and vice versa.

The focus of these previous works on rank-1 accuracy - the

proportion of times the model is able to predict the identity

from a sample given exactly one guess - implies that the

accuracy is sensitive to the number of classes the model must

distinguish between. Multiple works provide evidence of this

effect of number of classes on rank-1 accuracy, even if the

same data distribution and identification techniques are used

[1], [3], [5]. This effect is intuitive: if there are more options,

there are more ways for the model to be incorrect and the

same number of ways for the model to be correct. This effect

of the number of classes on accuracy can make synthesis of

findings across works difficult, as the classification can vary

as much as four orders of magnitude (e.g., 5 in [5] to over

50,000 in [6]).

To address this concern, I specify a criteria for an evaluation

metric that is invariant to class size, identify a metric known

to the literature that fits this criteria, justify this metric with

respect to the criteria, and then introduce a generalization of

this metric to allow comparisons from new work to previous

work. With the effectiveness of motion as a biometric having

been convincingly established [6], the future work in this

domain will be exploring the boundaries and conditions in

which motion can be used as a biometric. This work enables

these comparisons to be made more effectively.

II. MULTICLASS AUC

The task this work is concerned with is determining an

appropriate evaluation metric that is robust to varying numbers

of classes in a multiclass classification problem. The criteria

is that the desired metric should produce the same value

regardless if it is computed upon the full set of classes or

computed as the average of randomly chosen subsets of classes

of any size. More formally, let C represent a classification

problem whose elements C ∈ C are sets containing individual

members of the class C. Define an ideal evaluation metric M

such that the evaluation M(f,C) computed from the prediction

function f and the classification problem C is equal to the

expected value of the evaluation M(f,C′) for a randomly

chosen combination of classes C′ of a given size N , uniformly

randomly selected from the classes in C. Numerically, this is:

M(f,C) =

(|C|
N

)−1 ∑
C′⊆C,|C′|=N

M(f,C′)

A metric previously known to the literature, multiclass AUC,

defined by Hand and Till [7], fits this criteria. Multiclass AUC

can be described as the average of the pairwise separability

between classes. In the original work, Hand and Till extend

area-under-the-curve (AUC), the well-known measure of sep-

arability, to the multiclass case. AUC can be expressed as the

probability that a randomly selected member a of class A
will be larger than a randomly selected member b of class B
according to the value of the binary prediction function fbinary
meant to separate the two. This can be easily computed in

closed form as

AUC =
1

|A||B|
∑

a∈A, b∈B
1[fbinary(a) > fbinary(b)]
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where 1 is the indicator function. Multiclass AUC extends

this definition provided a multiclass prediction function f that

specifies values f(m,C) for each combination of member m
and class C. From this, Hand and Till [7] define the multiclass

AUC for a given prediction function f and set of classes C to

be the average of separabilities of one class from another for

all pairs of classes in the model:

1

|C|(|C| − 1)

∑
A,B∈C, A�=B

1

|A||B|
∑

a∈A, b∈B
f(a,A) > f(b, A)

As a sketch for the proof that metric fills the criteria above,

consider that this metric produces a separability value for

each ordered pair of classes, independent of the other classes

present. Due to the symmetry of classes in being selected

within the final set, each class and class pair is weighted

equivalently in the averaging process. By linearity, the average

of the final values for a given class size can be understood as

the average of all pairwise values, which produces the same

value as evaluating the full set of classes.

Hand and Till note that this metric weights the separability

of each pair of classes equally regardless of the number of

samples in the classes, which may not be appropriate if certain

classes (users) are determined a priori to be more likely than

others. However, in the context of estimating the effectiveness

of a biometric, priors are not traditionally included. This can be

explicitly done to ensure equality between users, i.e., equally

weighing errors regardless of who is being misidentified, or

it can be implicitly done by including the same number of

training instances per class (user) [2], [3], [6]. Additionally,

this is not an estimate of the accuracy attained by the same

training process upon a smaller data set constructed in the

same class-reduction process, but is instead an estimate based

upon the model after training.

III. ACCURACY LIMITED TO AN N -CLASS TESTING SET

While multiclass AUC is a good multiclass evaluation

metric for future work, there are no works in this space that

currently use it. In order to allow comparisons to be drawn

from this work to previous work, I define N -class accuracy as

a generalization of both rank-1 accuracy and multiclass AUC.

This metric may be narrated as a prediction task in which

there is a model and a set of N potential classifications, a

subset of all the classifications the model could make. First,

the model proposes its classification, and if the classification

is outside this subset, the model is asked to provide its next

best classification. This process only ends when the model

gives a predicted classification within the set of potential

classifications.

To derive this formula, consider the probability

P [arg maxC∈C′f(a, C) = A]

for a randomly selected subclassification C′ ⊆ C, |C′| =
N ≤ |C|, that sample a known to be from class A is

predicted correctly. For a sample to be correctly classified,

the random selection of classes within this set of N potential

classifications must avoid all classes that would trip up the

prediction for a given sample a whose true class is A. The

number of these ’error classes’ is

Nerror =
∑
C∈C

1[f(a, C) > f(a,A)]

. The general expression for a sample a to be correctly

classified in an N -class testing set is a simple combinatorics

expression:

P [arg max
C∈C′

f(a, C) = A] =

(|C|−Nerror

N

)
(|C|
N

)
Then, by linearity of expectation, the accuracy for the whole

model across all selections of C′ ⊂ C is equal to the mean of

each sample’s accuracy, and so the end result is simply the

mean of the expression above across all sessions.

When N = 2, N -class accuracy is the special case of

multiclass AUC, and when N = |C|, N -class accuracy is the

special class of standard rank-1 accuracy.

IV. CONCLUSION

In this work, I recommend and justify the use of multiclass

AUC as a preferred metric when comparing accuracies across

different datasets. I also propose N -class accuracy, a general-

ization between multiclass AUC and standard rank-1 accuracy.

The goal is to make trends in accuracy clearer with a simple

read through the literature. To continue to explore the benefits

and risks of VR-captured motion as a biometric, we need

to understand the boundaries and conditions of identifiability,

which in turn requires and insightful comparisons based on

previous literature.
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